A GENERAL SYNTHESIS OF α , β -UNSATURATED α -AMINO ACID ETHYL ESTERS

Chung-gi SHIN, * Yasuchika YONEZAWA, and Juji YOSHIMURA**

Laboratory of Organic Chemistry, Kanagawa University, Kanagawa-ku, Yokohama 221

**Laboratory of Chemistry for Natural Products, Tokyo Institute of Technology,

Meguro-ku, Tokyo 152

The general synthesis of ethyl 2-amino-2-alkenoate by reduction of ethyl 2-azido-2-alkenoate, derived from ethyl 2-alkenoate by four steps, with aluminum-amalgam is described.

It has been widely recognized that α , β -unsaturated α -amino acids (N-unsubstituted- α -dehydroamino acids) are of great importance as the starting materials of dehydropolypeptides and particular peptides which are important substances as antibiotics. 1)

In previous papers, a few synthetic method of ethyl 2-amino-2-alkenoate ($\underline{2}$) has been tried, but, they gave not always satisfied results. For examples, reduction of alkyl 2-nitro-2-alkenoate with aluminum-amalgam (Al-Hg) gave only the corresponding oximes, 2) except alkyl 2-amino-3-methyl-2-butenoate, 3 , 4) and successive hydrogenation and pyrolysis of alkyl 2-nitro-3-methoxyalkanoate gave $\underline{2}$ only in a low yield, together with the corresponding hydroxyamine as the main product. 2)

Moreover, ethyl 2-imino-3-methylbutanoate, obtained by the reaction of ethyl 2-oxo-3-methylbutanoate with triphenylphosphinimine in a good yield, could not isomerize into the corresponding enamine.⁵⁾

a;
$$R=CH_3$$
, b; $R=C_2H_5$, c; $R=n-C_3H_7$, d; $R=i-C_3H_7$, e; $R=C_6H_5$

In this paper, we wish to report that the reduction of ethyl 2-azido-2-

alkenoate (1), derived from ethyl 2-alkenoate by four steps, $^{6)}$ with Al-Hg gave 2 in a good yield. Several attempts of selective catalytic reduction gave only intractable products or over-hydrogenated products.

The typical preparation has been done as follows: A solution of $\underline{1}$ (0.03 mol) in ether (10 ml) was added drop by drop into a suspension of Al-Hg (from 3.5 g of aluminum) in ether (50 ml) with vigorous stirring at room temperature. After a few minutes, the ether began to reflux, the state was maintained by addition of a few drops of water at 20-min intervals. After addition of the solution was completed, the stirring was continued for 3 hr. The mixture was extracted thoroughly several times with ether-ethyl acetate (1:3 V/V). The combined extracts were evaporated and then distilled under reduced pressure to give $\underline{2}$ as a colorless oil in ca. 80% yield.

The structure of $\underline{2}$ was characterized spectroscopically as shown in Table 1 and gave satisfactory results in elementary analysis.

Moreover, $\underline{2}$ was converted into the corresponding phthaloylglycyl derivatives (3), which were identical with the authentic samples.²⁾

	Compound R	Yield (%)	Bp ^O C/mmHg	IR spectrum, a) cm ⁻¹ NH ₂ COOEt C=C	NMR spectrum, b) ppm β-H (Hz) NH
<u>2a</u>	CH ₃	75.6	40-41/1.5	3450,3360, 1714, 1658	5.65q(7.2), 3.50
<u>2b</u>	С ₂ н ₅	85.7	50-52/1.5	3450,3350, 1711, 1650	5.56t(7.1), 3.45
<u>2c</u>	n-C ₃ H ₇	80.0	58-60/0.3	3450,3360, 1715, 1650	5.59t(7.3), 3.50
<u>2d</u>	i-C ₃ H ₇	84.5	55-58/1.0	3450,3350, 1712, 1645	5.46d(9.1), 3.52
<u>2e</u>	^С 6 ^Н 5	70.9	90-95/0.5	3440,3350, 1711, 1632	6.50s, 4.30

Table 1. Ethyl 2-amino-2-alkenoate (2)

References:

- 1) B. W. Bycroft, <u>Nature</u>, <u>224</u>, 595 (1969).
- 2) C. Shin, M. Masaki, and M. Ohta, <u>Bull. Chem. Soc. Jpn.</u>, <u>43</u>, 3219 (1970).
- 3) C. Shin, M. Masaki, and M. Ohta, J. Org. Chem., <u>32</u>, 1860 (1967).
- 4) S. Tatsuoka, M. Murakami, and T. Tamura, Yakugaku Zasshi, 70, 230 (1950).
- 5) C. Shin, M. Masaki, and M. Ohta, Bull. Chem. Soc. Jpn., 44, 1657 (1971).
- 6) C. Shin, Y. Yonezawa, and J. Yoshimura, Chem. Lett., in contribution.

a) Recorded in KBr disk. b) Measured in CDCl3.